The letting go of
- ䷷ 旅 (lǚ),
- the 56 plot,
- or the "Years of Wander"
- Col Blanc,
- Aveyron,
- 1950-1971, the Lost, disoriented Stray ➡ sugar carburetion (『迷』流浪虎, stray cat/being一"T"-"I"-double-"G"(e)-"r", that spells "Tigger"一without knowing it / mostly mixing sweet-tasting, soluble carbohydrates, with air (oxygen) in appropriate proportion for rapid combustion, survival) till the discoveries of W.AM.'s Requiem in D minor, K. 626 & the library Medici's yellow hardcover publication of the 周易 and consequently the first course calculation: 旅, 56)
- 1972-1999, the Globetrotter & Wanderer ➡ physics (有/『 萬物之』母/Extreme Orient oriented 麒)
- 1999-2021, the Digital No⋅Mad & Rover ➡ psychic (天地之間/無關內旅/disoriented & apparelled Seeker)
- 2021-V-VII on (Friday of farewell*) ➡ 別離 ➡ to the 56 plot (別離: do not ionize, i.e. stop accidentally, inadvertently and unwittingly** make use of the force, in the field, to convert into new ions and following blindly the natural 陰 even 2, 8, 16, 32 rules and trends [duet & octet/bit & octet]²) i.e.: do not make use of the Law of Attraction stupidly.
- quarks, the elementary subatomic particles that form matter & combine to form hadrons, such as protons and neutrons and experience all four fundamental interactions, also known as fundamental forces (electromagnetism, gravitation, strong interaction, and weak interaction),
- quantum3, the smallest possible, and therefore indivisible, unit of a given quantity or quantifiable phenomenon. 量
- ䷀ 1 乾 (qián), "Force",
- ䷁ 2 坤 (kūn), "Field",
- 常道, "Princeps",
- 常名, "Plan", although not flat,
- 無, the "Invisible Dance" (無形舞)
- 有, the "Presence" (萬物之精神和形式)
farewell (plural farewells)
- A wish of happiness or safety at parting, especially a permanent departure
- Synonyms: goodbye, adieu
- 1922, Ben Travers, chapter 5, in A Cuckoo in the Nest:
- The departure was not unduly prolonged. […] Within the door Mrs Spoker hastily imparted to Mrs Love a few final sentiments on the subject of Divine Intention in the disposition of buckets; farewells and last commiserations; a deep, guttural instigation to the horse; and the wheels of the waggonette crunched heavily away into obscurity.
- A departure; the act of leaving
- c. 1591–1592, William Shakespeare, “The Third Part of Henry the Sixt, […]”, in Mr William Shakespeares Comedies, Histories, & Tragedies: Published According to the True Originall Copies (First Folio), London: Printed by Isaac Iaggard, and Ed[ward] Blount, published 1623, OCLC 606515358, [Act II, scene i]:
- See how the morning opes her golden gates, And takes her farewell of the glorious sun.
- September 14, 1710, Joseph Addison, The Examiner No. 1
- Before I take my farewell of the subject.
If the concepts and predictions of relativity (cf Relativistic Time) are often considered difficult and counter-intuitive, many of the basic tenets and implications of quantum mechanics may appear absolutely bizarre and inconceivable, but they have been repeatedly proven to be true, and it is now one of the most rigorously tested physical models of all time.
Quanta
One of the implications of quantum mechanics is that certain aspects and properties of the universe are quantized, i.e. they are composed of discrete, indivisible packets or quanta. For instance, the electrons orbiting an atom are found in specific fixed orbits and do not slide nearer or further from the nucleus as their energy levels change, but jump from one discrete quantum state to another. Even light, which we know to be a type of electromagnetic radiation which moves in waves, is also composed of quanta or particles of light called photons, so that light has aspects of both waves AND particles, and sometimes it behaves like a wave and sometimes it behaved like a particle (wave-particle duality).
An obvious question, then, would be: is time divided up into discrete quanta? According to quantum mechanics, the answer appears to be “no”, and time appears to be in fact smooth and continuous (contrary to common belief, not everything in quantum theory is quantized). Tests have been carried out using sophisticated timing equipment and pulsating laser beams to observe chemical changes taking place at very small fractions of a second (down to a femtosecond, or 10−15 seconds) and at that level time certainly appears to be smooth and continuous. However, if time actually is quantized, it is likely to be at the level of Planck time (about 10-43 seconds), the smallest possible length of time according to theoretical physics, and probably forever beyond our practical measurement abilities.
It should be noted that our current knowledge of physics remains incomplete, and, according to some theories that look to combine quantum mechanics and gravity into a single “theory of everything” (often referred to as quantum gravity – see below), there is a possibility that time could, in fact, be quantized. A hypothetical chronon unit for a proposed discrete quantum of time has been proposed, although it is not clear just how long a chronon should be.
Copenhagen Interpretation
One of the main tenets of quantum theory is that the position of a particle is described by a wave function, which provides the probabilities of finding the particle at any number of different places, or superpositions. It is only when the particle is observed, and the wave function collapses, that the particle is definitively located in one particular place or another. So, in quantum theory, unlike in classical physics, there is a difference between what we see and what actually exists. In fact, the very act of observation affects the observed particle.
Another aspect of quantum theory is the uncertainty principle, which says that the values of certain pairs of variables (such as a particle’s location and its speed or momentum) cannot BOTH be known exactly so that the more precisely one variable is known, the less precisely the other can be known. This is reflected in the probabilistic approach of quantum mechanics, something very foreign to the deterministic and certain nature of classical physics.
This view of quantum mechanics (developed by two of the originators of quantum theory, Niels Bohr and Werner Heisenberg), is sometimes referred to the Copenhagen interpretation of quantum mechanics. Because the collapse of the wave function cannot be undone, and because all the information associated with the initial possible positions of the particle contained in the wave function is essentially lost as soon as it is observed and collapsed, the process is considered to be time-irreversible, which has implications for the so-called “arrow of time”, the one-way direction of time that we observe in daily life (cf The Arrow of Time).
Some quantum physicists (e.g. Don Page and William Wootters) have developed a theory that time is actually an emergent phenomenon resulting from a strange quantum concept known as entanglement, in which different quantum particles effectively share an existence, even though physically separated so that the quantum state of each particle can only be described relative to the other entangled particles. The theory even claims to have experimental proof recently, from experiments by Ekaterina Moreva which show that observers do not detect any change in quantum particles (i.e. time foes not “emerge”) until becoming entangled with another particle.
Many Worlds Interpretation
The Copenhagen interpretation of quantum mechanics, mentioned above, is not, however, the only way of looking at it. Frustrated by the apparent failure of the Copenhagen interpretation to deal with questions like what counts as an observation, and what is the dividing line between the microscopic quantum world and the macroscopic classical world, other alternative viewpoints have been suggested. One of the leading alternatives is the many-worlds interpretation, first put forward by Hugh Everett III back in the late 1950s.
According to the many-worlds view, there is no difference between a particle or system before and after it has been observed, and no separate way of evolving. In fact, the observer himself is a quantum system, which interacts with other quantum systems, with different possible versions seeing the particle or object in different positions, for example. These different versions exist concurrently in different alternative or parallel universes. Thus, each time quantum systems interact with each other, the wave function does not collapse but actually splits into alternative versions of reality, all of which are equally real.
This view has the advantage of conserving all the information from wave functions so that each individual universe is completely deterministic, and the wave function can be evolved forwards and backwards. Under this interpretation, quantum mechanics is therefore NOT the underlying reason for the arrow of time.
Quantum Gravity
Quantum gravity, or the quantum theory of gravity, refers to various attempts to combine our two best models of the physics of the universe, quantum mechanics and general relativity, into a workable whole. It looks to describe the force of gravity according to the principles of quantum mechanics, and represents an essential step towards the holy grail of physics, a so-called “theory of everything”. Quantum theory and relativity, while coexisting happily in most respects, appear to be fundamentally incompatible at unapproachable events like the singularities in black holes and the Big Bang itself, and it is believed by many that some synthesis of the two theories is essential in acquiring a real handle on the fundamental nature of time itself.
Many different approaches to the riddle of quantum gravity have been proposed over the years, ranging from string theory and superstring theory to M-theory and brane theory, supergravity, loop quantum gravity, etc. This is the cutting edge of modern physics, and if a breakthrough were to occur it would likely be as revolutionary and paradigm-breaking as relativity was in 1905, and could completely change our understanding of time.
Any theory of quantum gravity has to deal with the inherent incompatibilities of quantum theory and relativity, not the least of which is the so-called “problem of time” – that time is taken to have a different meaning in quantum mechanics and general relativity. This is perhaps best exemplified by the Wheeler-DeWitt equation, devised by John Wheeler and Bruce DeWitt back in the 1970s. Their attempt to unify relativity and quantum mechanics resulted in time essentially disappearing completely from their equations, suggesting that time does not exist at all and that, at its most fundamental level, the universe is timeless. In response to the Wheeler-DeWitt equation, some have concluded that time is a kind of fictitious variable in physics and that we are perhaps confusing the measurement of different physical variables with the actual existence of something we call time.
Imaginary Time
While looking to connect quantum field theory with statistical mechanics, theoretical physicist Stephen Hawking introduced a concept he called imaginary time. Although rather difficult to visualize, imaginary time is not imaginary in the sense of being unreal or made-up. Rather, it bears a similar relationship to normal physical time as the imaginary number scale does to the real numbers in the complex plane, and can perhaps best be portrayed as an axis running perpendicular to that of regular time. It provides a way of looking at the time dimension as if it were a dimension of space so that it is possible to move forwards and backwards along it, just as one can move right and left or up and down in space.
Despite its rather abstract and counter-intuitive nature, the usefulness of imaginary time arises in its ability to help mathematically to smooth out gravitational singularities in models of the universe. Normally, singularities (like those at the centre of black holes, or the Big Bang itself) pose a problem for physicists, because they are areas where the known physical laws just do not apply. When visualized in imaginary time, however, the singularity is removed and the Big Bang functions like any other point in space-time.
Exactly what such a concept might represent in the real world, though, is unknown, and currently, it remains little more than a potentially useful theoretical construct.
No comments:
Post a Comment